
Abstract-This work shows an automatic, fast and reproducible 
algorithm to segment the encephalic parenchyma in magnetic 
resonance (MR) images. The algorithm has been implemented 
following a rule-based schema in which a fuzzy analysis of MR 
images information has been introduced to deal with the 
vagueness associated to the images. The obtention of a fuzzy 
result helps to determine the accuracy of the classification. The 
evaluation of the results is based on the use of quality indexes, 
which allow the comparison with previous works.  
Keywords - MR, brain, labeled segmentation, image processing, 
fuzzy techniques. 

 
I. INTRODUCTION 

 

Magnetic resonance imaging (MRI) has become the 
imaging method of choice for examination of disorders of 
the central nervous system [1][2]. Together with diagnostic 
applications of MRI, its role in research studies must be 
emphasized. In some of them is necessary a further analysis 
or post-processing of the information obtained in the 
explorations. Many of the computer-assisted tasks introduced 
in brain analysis require segmentation of the whole brain, 
either because the whole brain is the region of interest (ROI), 
as in atrophy studies, or because this segmentation makes 
easier a further analysis. Nevertheless, this segmentation is 
difficult due to the complexity of MR images and the 
different characteristics observed in a study. This complexity 
is based on factors like noise, non-homogeneities, number of 
structures, and morphologic dependencies of these structures 
with the location and the orientation of the slices. All them 
are a handicap to segment the whole brain with solutions 
based on automatic algorithms. 

 
Several techniques have been considered with the aim to 

achieve automatic solutions in the segmentation of the brain. 
Examples of them are the application of knowledge-based 
classification algorithms [3], the use of automatic thresholds 
[4][5], the refinement of brain contours [6][7], the isolation 
of brain tissues based on statistical methods [8][9], the use of 
region-growing algorithms [10], the application of neural 
networks [11], and the introduction of fuzzy techniques in 
the segmentation process [12][13][14]. Nevertheless, 
obtaining optimal and full automatic segmentation is a 
difficult task and most of the results of previous works are 
sensitive to factors as non-homogeneities, misclassifications, 
the presence of disjoint regions or the excessive 
computational cost. 

 
Since MR brain studies can be acquired using different 

sequences, different weighted images (PD, T2, T1) must be 
considered. Each weighted image introduces different 
problems in the segmentation process according with the 

tissue contrast introduced by the sequence. Then, a right 
selection of weighted images, based on morphological 
properties, is essential to obtain good results. T1-weighted 
images provide a high degree of morphological information, 
and show good contrast of parenchyma region with regard to 
cerebrospinal fluid (CSF).  

 
Moreover, an important factor to consider in the 

segmentation process is the uncertainty of MR images. This 
uncertainty depends on the own features of each image, and 
the presence of noise or magnetic field non-homogeneities. 
In this way, the brain segmentation is conditioned by the 
vagueness observed in the different regions to analyze. 

 
In this work, we propose a fuzzy rule-based algorithm to 

segment the encephalic parenchyma in T1-weighted images. 
The introduction of a fuzzy analysis of the information aids 
to treat better the uncertainty associated to MR images. The 
assessment of the results has considered different quality 
criteria to evaluate them and to compare with other works. 

 
II. METHODOLOGY 

 
The structure of the algorithm is oriented to obtain the 

solution from low-level perception features, considering a 
final validation procedure in order to refine the result. The 
algorithm has been designed following a rule-based schema 
to make easier its implementation.   

 
In T1-weighted images, according with their perception 

features, the brain has been divided in four classes, which are 
subregions of the encephalic parenchyma and CSF. These 
classes have been described in the following way: 

1) Normal Appearing White Matter (NAWM): region 
observed in the images with light gray level and 
quite homogeneous texture. 

2) Remainder parenchyma (RP): pixels included in this 
region are those observed with medium-dark gray 
level and slight homogeneous texture. This region is 
the complementary to NAWM in the encephalic 
parenchyma including gray matter and the lesions or 
regions where gray level alterations on normal 
values are appreciated 

3) Wide fluid regions (WFR): wide regions observed 
with dark gray level and quite homogeneous texture. 
Pixels included in this region basically belong to the 
ventricular region. 

4) Narrow fluid regions (NFR): narrow regions 
observed with dark gray level and slight 
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homogeneous texture. This region is basically 
determined by the subarachnoid spaces. 

 
According with the previous descriptions, the following 

features are considered: 
1) Gray level: light, medium-dark and dark. 
2) Texture: quite homogeneous and slight homogeneous. 
 
Previous descriptions can be formulated by means of the 

fuzzy rules: 
1) A pixel belongs to the NAWM class if its gray level 

is light and its texture is quite homogeneous. 
2) A pixel belongs to the RP class if its gray level is 

medium-dark and its texture is slight homogeneous. 
3) A pixel belongs to the WFR class if its gray level is 

dark and its texture is quite homogeneous. 
4) A pixel belongs to the NFR class if its gray level is 

dark and its texture is slight homogeneous. 
 
The implementation of a fuzzy system based on these 

four rules requires the definition of the antecedent fuzzy sets: 
1) f light gl : fuzzy set associated to the feature light gray 

level. 
2) f medium-dark gl : fuzzy set associated to the feature 

medium-dark gray level. 
3) f dark gl : fuzzy set associated to the feature dark gray 

level. 
4) f QH t : fuzzy set associated to the feature quite 

homogeneous texture. 
5) f SH t : fuzzy set associated to the feature slight 

homogeneous texture. 
 
Membership functions of these fuzzy sets are defined 

from probability density and distribution functions. The 
aggregation of the antecedent fuzzy sets allows obtaining the 
consequent fuzzy sets  (f NAWM, f RP, f WRF, f NRF). 

 
In order to obtain the probability density functions, we 

have considered 72 images of 2 multiple sclerosis (MS) 
patients. These images are axial slices acquired using a T1-
weighted spin-echo sequence  (TR/TE/NEX 667/14/1, FA 
70°, FOV 250 mm, Thickness 3mm) in a 1.5 T Magnetom 
Vision MR System (Siemens, Erlangen, Germany). These 
images have been manually segmented to obtain the 3 data 
sets associated to gray level (light, medium-dark and dark) 
and the 2 associated to texture (quite and slight 

homogeneous). In this way, we have obtained the 5 subsets 
of the design set, each one of them associated to each one of 
the antecedent fuzzy sets. 

 
The evaluation of the features has been performed using 

the following operators: 
1) The evaluation of a value associated to gray level is 

performed by means of the minimum gray level 
value in a 3x3 window (8-neighborhood of the 
central pixel). 

2) The evaluation of a value associated to texture is 
performed by means of the threshold to get 25 pixels 
in which the gray level differences are greater than 
this threshold inside a 7x7 window. 

 
The membership functions to the five antecedent fuzzy 

sets (flight gl, fmedium-dark gl, fdark gl, fQH t, fSH t) are determined 
from their probability density function (p.d.f.) [15]. For each 
subset of the design set, the values of the design set are 
evaluated with the considered operators, and a p.d.f. is 
obtained. Then, each p.d.f. allows obtaining the membership 
degree to the corresponding antecedent fuzzy set. 

 
The membership functions to the consequent fuzzy sets 

are obtained by aggregation of the antecedent fuzzy sets 
according with the fuzzy rules previously described and 
considering the minimum as aggregation function. 

 
In the defuzzification process, each pixel is classified 

according with the membership degree to the fuzzy set 
associated to each class. The membership degree to each 
fuzzy set allows labeling each pixel under one of the four 
defined classes. This labeling is based on the greatest value 
among the membership degrees associated to the four 
consequent fuzzy sets. Pixels belonging to NAWM class are 
right classified while some misclassifications are observed in 
pixels belonging to the other three classes. In addition, 
external structures to the encephalic parenchyma are also 
misclassifications because they were not initially removed. 

 
In order to reduce misclassifications and to remove 

external structures a validation procedure must be introduced 
in the algorithm. This validation procedure considers to 
reduce the number of misclassifications the rule: �a pixel 
classified under RP class belongs to encephalic parenchyma 
if it is located very close and contiguous to pixels classified 
under NAWM class, it has strong membership degree to RP 
class or its probability of belonging to NAWM class is 
higher than to WFR or NFR classes�. 

 
Then, the encephalic parenchyma is determined by those 

pixels classified under NAWM class and those classified 
under RP class according with the third previous rule. The 
implementation of this rule has been performed in the 
following way:  

1) A pixel classified under RP class is close enough and 
contiguous to NAWM class pixels if its distance to 

RP 

NFR NAWM

WFR

Fig. 1. Some localizations of the different classes in a 
T1-weighted image. 



the closest pixel initially classified under NAWM 
class is not greater than 2 pixels. Its implementation 
consists on applying morphological dilation using a 
circular structuring element of radius 2. 

2) A pixel classified under RP class has strong 
membership degree to this class if its membership 
degree to fRP is higher than or equal to 0.75. 

3) A pixel classified under RP class has higher 
possibility of belonging to NAWM class than WFR 
or NFR classes when its membership degree to 
NAWM is greater than to WFR or NFR fuzzy sets.  

 
The isolation of the encephalic parenchyma has been 

performed dividing the different slices in two groups 
separated by a automated selected reference slice located 
upper the presence of eyes, in which the encephalic 
parenchyma appears as a single region with high enough size 
clearly differentiated of external structures. The isolation 
procedure is based on the application of erosion and dilation 
morphological operators and the analysis of the connectivity 
according with the complexity observed on the reference, 
upper or lower slices. 

 
III. RESULTS 

 
The designed algorithm has been tested over a test set of 

230 MR images from 5 patients and 138 MR images from 3 
healthy volunteers. Images of the test and design sets were 
acquired using the same sequence. Its analysis has been 
performed on a SGI Octane workstation with a 270 MHz 
R12000 processor that spends about 5 minutes to segment 
the whole encephalic parenchyma in 46 T1-weighted images  
(2 minutes in the first stage, and 3 minutes in the validation). 

 
Figure 2 is a sample of the segmentation results, in 

which the contour of the segmented regions is represented by 
white lines surrounding these regions.  

 
The quality of these results has been evaluated 

considering qualitative and quantitative criteria. Qualitative 
analysis is based on the visual inspection by different 
neuroradiologists. And, quantitative assessment considers: 

1) The similarity degree between the proposed 
automatic segmentation and the result obtained by 
different operators using semi-automated and manual 
tools included in Dispimage software (UCLH, UK).  

2) The study of reproducibility for scan-rescan. 
 

A. Qualitative analysis 
 
The proposed algorithm achieves an accurate enough 

encephalic parenchyma segmentation for volume 
measurement purposes, bearing in mind the reproducibility 
introduced by the automatic segmentation. In addition, it is 
important to emphasize the good NAWM estimation 
obtained using this algorithm. 
 

B. Analysis of similarity 
 
Two indexes have been considered to evaluate the 

similarity between automatic and manual segmentations in 
three patients and three healthy volunteers. These indexes 
considers a binary segmentation as a set R containing the 
pixels belonging to the classification, yielding that the 
similarity between two segmentations R1 and R2 is given by 
a real number S ∈  [0,1] defined by   

S=2 |R1∩R2|/(|R1|+|R2|)     (1) 
S�=(R1∩R2)/(R1∪ R2)      (2) 

 
Both indexes take high values, nearly all of S values 

higher than 0.9 and S� values around to 0.9 in all cases. In 
patients, mean values of S and S� are around 0.93 and 0.89 
respectively for automatic/manual comparison, while that in 
the comparison of manual traces take mean values of 0.953 
and 0.912 respectively. In healthy volunteers it can observe a 
slight increase of these values of about 1-2%. Standard 
deviations are in the same range in all measures, keeping on 
below 0.026. 

 
C. Reproducibility analysis 

 
Reproducibility was assessed for scan-rescan (i.e. 

imaging the subject twice and segmenting encephalic 
parenchyma from separate acquisitions). 4 MS patients were 
selected to represent a range of parenchyma measures. Each 
subject was scanned, removed from the magnet, and after a 
break not lower than 15 minutes repositioned and rescanned. 
The images were post-processed and brain parenchyma 
volumes were obtained from each scan. The coefficient of 
variation (σ/mean) observed was 0.65%. 

Fig. 2 Sample of obtained results for different slices. 



 
IV. DISCUSSION 

 
The segmentation, that this algorithm achieves, is 

accurate in most of slices. Nevertheless, some regions can be 
affected by non-critical misclassification problems, usually 
located on end slices or periphery regions. These 
misclassifications do not mean important reductions in the 
size of these regions. Sometimes misclassifications are due 
to the presence of flow artifacts such as around the fourth 
ventricle. The inclusion of external regions is very 
infrequent, only in locations such as orbital fat could be 
partial and small misclassifications. 

 
The use of quality criteria helps to compare with other 

works. To make this comparison we must corrected the 
differences that manual methodology introduces. In this way, 
we have equaled the values of the similarity indexes related 
to the comparison of manual segmentations, and from this 
new value we have corrected the value of the indexes for 
automatic/manual comparisons. Then, we have observed that 
the corrected values of the similarity indexes obtained in this 
work are in the same range of values that the obtained in 
other works [4][7] using the same indexes. The comparison 
with the work [7] shows that the values of S are the same 
range, and it is important to emphasize that our segmentation 
also excludes CSF regions. In the comparison with the work 
[4], S� values are also in the same range, but our algorithm 
takes advantage of the local fuzzy analysis to improve its 
robustness in presence of non-homogeneities. 

 
The reproducibility of the algorithm allows applying it to 

brain volume measurements. In addition the computational 
cost is one of the lowest in this kind of algorithms [4][5][7], 
and clearly lower in relation to a manual segmentation. 

 
V. CONCLUSION 

 
By means of the application of fuzzy techniques we have 

designed a fast, reproducible and fully automatic approach to 
segment the encephalic parenchyma on T1-weighted images. 
This algorithm achieves a good NAWM estimation and an 
accurate segmentation of the encephalic parenchyma. And, 
the analysis of the results, based on different quality indexes, 
shows high enough quality to use the designed algorithm 
instead of manual or semi-automatic algorithms, allowing its 
application to quantitative studies [16].  

 
Finally, it is important to emphasize that this algorithm 

gives information about the accuracy in the classification of 
pixels. In this way, the study of the continuity in the fuzzy 
information helps to evaluate and improve the results. 
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